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Abstract. Formulae for describing the photoabsorption and the photon scattering by a plasma
or a liquid metal are derived in a unified manner. It is shown how the nuclear motion, the free-
electron motion and the core-electron behaviour of each ion in the system determine the structure
of the photoabsorption and scattering in an electron—ion mixture. The absorption cross section
in the dipole approximation consists of three terms which represent the absorption caused by the
nuclear motion, the absorption owing to the free-electron motion producing optical conductivity
or inverse Bremsstrahlung and the absorption ascribed to the core-electron behaviour of each ion
with the Doppler correction. Also, the photon scattering formula provides an analysis method
for experiments observing the ion—ion dynamical structure factor (DSF), the electron—electron
DSF giving plasma oscillations and the core-electron DSF yielding the x-ray Raman (Compton)
scattering with a clear definition of the background scattering for each experiment, in a unified
manner. A formula for anomalous x-ray scattering is also derived for a liquid metal. At the same
time, Thomson scattering in plasma physics is discussed from this general point of view.

1. Introduction

For an isolated atom or the free-electron system without taking account of the existence of
bound electrons, the theory of photoabsorption and scattering provides a simple formula, as
given in the standard books [1]. However, in a real system such as a plasma or a liquid metal,
photons are interacting with the free electrons and the bound electrons in the system: we must
treat the free elections and the bound electrons on an equal footing to investigate interactions of
photons with matter. In some works treating plasmas [2—4], the absorption cross sgtipn

is separated into three paris;p(w), the absorption owing to the bound—bound transitions in

the ion,ops (w), caused by the transitions from the bound to the free statergg from the
free—free transition, in the formula

4drw

I & (w) 1)

oa(w) =

= obb(w) * opf (@) + off (W) 2

with use of the atomic polarizabilitf (w). The situation is not so simple, as will be shown

in this paper; photons interact with the nuclear motion through the bound electrons carried

and the screening electrons, in addition to the ‘free’ electrons and the bound electrons in the
system, in a coupled manner. Here, it should be mentioned that the free—free absorption in a
plasma cannot be described by the same atomic polarizabilityto give opp(w) andoys (w),

as is shown in this paper. This example brings to light some confusions in treating the photon
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interactions with plasmas. It is the purpose of this paper to clarify the mechanism of photon
interactions with plasmas and liquid metals.

On the other hand, the experiments on photon scattering by matter are focused on the
observation of either the nuclear motion, the free-electron motion or the core-electron behaviour
of the ion by choosing the transferred momentgignd energy» suitable to the phenomena.
Therefore, when the scattering by one of these motions is observed, the other motions yield the
background scattering; there are many kinds of scattering called Raman, Rayleigh, Compton
and Thomson, combined sometimes with the term ‘elastic’ and/or ‘inelastic’, for example, in
a confused way. In this paper, we present the formula for scattering of photons by plasmas
and liquid metals in a unified manner to show the nuclear motion, the free-electron motion
and the core-electron behaviour of the ion; this formula can clarify the relationship between
the observing scattering and the background scattering for each experiment, and provides the
analysis method for each experiment.

The theory of photoabsorption in atomic systems is based on first-order time-dependent
perturbation; the transition probability for the absorption of a photon (of wavevgcamd
frequencyw with its polarizatione,;) accompanied by a transition from a state ‘a’ to a state
‘b’ of the absorbing system provides the absorption cross section [5] in the form

2
472 (e \* 1 Ea— Ep

rw)=—|[—] = |l ———t+w|. 3
w0 = (5] 3 DX (B2 v0) @

Here, a proper statistical averagipgover the initial states of the absorber has been performed;

E, is an eigenstate of the absorber (the nucleus—electron mixture). This expression can be
rewritten by following the manner of Van Hove to derive the neutron scattering formula [6] in
another form:

ZAN

(bl > e pi€r|a)
j=1

47'[262 1 o 47[26'2
A - gll@r—on £ drdf = — 4
Ua(q ’ (,()) hca) 27TN . Cl(’f’, ) T ]’lC(I) a(q’ w) ( )
with
ar.1) = e, f dr’ G, 0jr +1.1)) - e 5)

in terms of the current operator of all electrons in the system consistingaibms with the
atomic numbeZ,:

XK pi(t)
=3 8 =)= =. (6)
i=1

This means that the absorption cross section can be determined by the current—current
correlation (dyad):

(g, ) = % / @D (j (¢!, 0)j(r + 7', 1)) dr’ dr 7
1 [ )
= /_ GO0 d (8)
with
a0 = 3 P20 expliq o). ©

J
Therefore, the absorption cross section in the dipole approximation is obtained by taking the
limit
lim 27a(q. @) = 15,00, 0) = iy (o) (10)
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wherea(q, ) reduces to the longitudinal current—current correlaui@;(o, w), since the
transverse current—current correlatipr , (0, ) becomes identical with the longitudinal
current—current correlation in this limit for the isotropic system.

On the other hand, when an incident photon skgtesg, wo is scattered by a plasma to a
stateks, ey, w1, the differential scattering cross section is described in terms of the dynamical
structure factor (DSF§% (g, w) of all electrons involved in the plasma as free and bound
electrons [5, 7] in the form

d?%o do k1
— el _StOt , 11
d$2 do (dQ)Thko e (4 ) (1)
with the Thomson cross section
DN (L) (e (12)
dQ /4, \mc? o€
Here, the total DSF is defined by
1 i(qgr—w
See(@ @) = 5— / @D GE(r, 1) dr dr (13)
in terms of the time-dependent density—density correlation function:
Ge(r.1) = /dr’ (pe(r’, 0)pe(r + 7', 1)) (14)
with
ZAN
pe(r. 1) =Y 8(r —r;(1)). (15)
j=1

The above expressions for the absorption cross section (4) and the scattering cross section
(12) are written for all electrons, which are contained as the bound electrons or the free electrons
coupled withN nuclei with the atomic numbeZ, in the system. These expressions are only
formal, and do not give any information about the mechanism of the photoabsorption and
scattering in a real system. Under the assumption that a plasma or a liquid metal clearly
consists of ions with the charg&é and free electrons, we give the physical structure for the
absorption cross section from (4) in section 2, and for the scattering cross section from (11) in
section 3. The last section is devoted to conclusions. A glossary of main symbols is given as
table 1.

2. Photoabsorption

We can obtain the absorption cross section in the dipole approximation (10) from the dynamical
structure factos%% (g, w) of the total electrons by noting the following relation [8, 9]:

1 o) . 2
ﬁﬁ@sﬁfummW&ww:h%ﬁwm (16)

(o]

where the ‘total electrons’ are all electrons contained in the system as the core electrons around
each nucleus and the free electrons. From the definition of the DSF

1 o :
S&¢MEZW/ 1"(g, 1)’ dr (17)

in terms of the intermediate scattering function
1Yq, 1) = (pe(q, ) pa(gq, 0)) (18)
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Table 1. A glossary of main symbols: a list of notation and an equation to define each symbol (in
the column headed ‘Definitions’).

Symbols Definitions Meanings

a];, ag Creation and annihilation operators

Cei(g) = Cei(q, 0) Electron—ion direct correlation function

d(r) (A.8) Dipole moment

€gi.r €0, €1 Polarization of a photon

fi@), faq) (31) lonic and atomic form factors

fim(q) = (llexplig - r]im) James’s symbol [16]

G(q,w),G(q) = G(q,0) Dynamical and static local-field correction

GO (r, 1) (14) Time-dependent density correlation of total electrons
k(w) (A.16) Absorption coefficient

N The total nucleus (ion) number in the system

S©%g, w) (52) DSF of the total electrons in the system

See(q, ), Sel(g, ®), Si (g, ®) (74), (39) DSFs for the electron—ion mixture

Ss(g, ) (56) Self-part ofS) (¢, ®)

S%(q, w), (g, ®) (36) DSF of the core electrons in the ion

S%(q, w) (42) ‘Free’-electron DSF

Slo@), She(@) (67) Incoherent Compton scattering caused by the ion and atom
Zn =Zg + Z¢ The atomic number (bound and free electrons)

& (w), a*®(w) (51), (A.11) Atomic polarizability

(g, w) @) Current—current correlation for the total electrons
;Lff‘(w) =ub (g, 0) (16) Longitudinal part ofe,; proportional tara(w)

M[I‘“C(w), uﬁf(w), uge(w) Nucleus, free- and core-electron contributionagﬁ(a})
p(q) = p(q,0) (41), (78) Free-electron cloud in the pseudoatom

pe(g,t) = pclg, 1) + pi(g, 1) (29) Total electron distribution (the core and free electrons)
pe(q,1),80p8(q, 1) (32), (37) Bound-electron distribution in the ion and its deviation
pi(g, 1) (23) The ion (nucleus) distribution

oalgh, w), oa(w) = 0a(0, ®) 3) Absorption cross section of a photon stajed, ;)
6%%(w), &[e(w) (A.14) Conductivities of core and free electrons

Xge Density response function of non-interacting electron gas
X,;m[w], X;e[a)], x5l (76), (A.12) Density responses of total, free and core electrons

we can determine the total DSF in terms of the total electron depgity 1) from 1'%(q, 1).
Here, note that the total electron density can be split into the core-electrop.pg@rt) and
the free-electron pag; (q, 1):

ZAN

pe(q, 1) = Y explig - ri(1)] (19)
k=1

pc(g, 1) + pr(q, 1). (20)
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Furthermore, the core electrons are considered to be distributed among nuclei with positions
R,

N Zs N Zs
pe@, )= Yy explig-ria(] =) explig- (}, (1) + Ru(1)] (21)

a=1 j=1 a=1 j=1
N VA

= > ( X explia- (0] explia - R, (0] (22)
a=1 Vj=1

which can be approximated by using the form factdy) of the Zg core electrons as follows:

Zp N
pe(g, 1) = <Z explig - r}o(t)]> explig - Ro (D] = filg)p(g.1).  (23)

=1 =1

With the use of this approximation, we obtain the intermediate scattering function

(g, 1) = ([pe(g, ) + pr (g, D][pE (g, 0) + pf (g, O)]) (24)
= (pclg, pe(a, 0) +(pr(q, 1)p¢ (g, 0) + (pclq, ) pf (g, 0))
+(pr(q, D) pf (g, 0)) (25)
= NIfi@PFi(g.0) + N[ZsF*(q, 1) — | i@I*]Fs(q, 1)
+ NZiFedq. 1) + 2Nv/Z1 fi (@) Fei(g. ). (26)
In the above, several correlations among free electrons and ions are defined as follows:
Fi(g,n) =) _(explig - (Ro(1) — Rg(O)])/N @7
a.p
Fs(gq, 1) = (explig - (Ry (1) — Ry (0))]) (28)
Fee(q, 1) = (pi(q, )pf (g, 0))/(ZiN) (29)
Fa(g,t) = {pi(a, ) (@, 0))/(VZiN) (30)
and the ionic form factor in (23) is defined for the core electrons in the ion in a plasma by
fi(@) = (ps(g, D) (31)

with the bound-electron density arouaehucleus:

ZB ZB
pe(g, 1) = Y_explig-r, (0] =) explig - ro(1)] (32)
j=1 j=1

J J

which becomes identical with the bound-electron density of any nucteus ). Also, the
electron—electron correlation between the core electrons in the ion is defined by

ZgF*(q, 1) = (ps(q, 1)ps(g, 0)). (33)

From equation (26), we can represent the total electron DSF in terms of the ion—-ion DSF
Si (¢, w), the electron—ion DSB (g, ) and the electron—electron DSE.(g, ) in the form

1 [~ ‘
Seel@: @)= 5— [ 1*(q,ne" di
—00

= 1fi(@) 1281 (q, @) + 2y/Zt f1(q) Sei(q, ®) + Z; Seelq, @)
+7Zs / $€(g, w — @) Ss(q, ') do'. (34)
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Also, the DSF for the core electrons in each ion is defined as

5°(q., w) = $°(q, w) — | /i(9)1?8(w)/ Zs (35)
_ 1 * * iwt
= onZs [m(SpB(q, 1) 8pg(q, 0))€” dr (36)
with the use of the density deviatidpg (g, ¢) from its averagépg(q, 1)):
spe(q.t) = pa(q.t) — (pB(q. 1)). (37)

With the help of the following relations derived in the previous work [10]:

2
Seelq ) = 12 (qu)' S (g, )+ S2%(g. ) (38)
Sel(q, w) = %Su (q, w) (39)
f

the DSF (34) of the total of the electrons is written as

Sea(q, @) = 1£i(@) + p(@)12Si (g, ®) + Zi Seelq, ) + Zg f §%g, & — @)Ss(g, o) do.
(40)
Here, p(gq) represents the Fourier transforms of the electron clotd forming a neutral
pseudoatom screening the ion:
p(q) = n§Cei(q) xg* /{1 +n§Bve@)[1 — G(@)]x %} (41)

which is exactly as prescribed by the use of the electron—ion direct correlation futigtign
and the local-field correction (LFQ@)(¢) [10]. Also, S2(q, w) has the same form as the DSF
in the jellium model except that the dynamical LE&X g, w) should be determined for an
electron—ion mixture not in the jellium model, as written in the form

. _ 11 hp ~ 1
el ) ) T exp(— i) (é . w>> 0

with
xJle]
_ pnt Oe|
noBreelq)G(q, C‘))Xq (]
which is also an exact (but formal) expression for the ‘free’-electron DSF. To take account of

the absorption due to the motion of nuclei, we must add the nucleus charge current in (9) as
ej = e(je — ZadN) with

. P,
IN = Z ﬁﬁ(r — Ra).

o

(g, w)=1+ ”gﬁvee(Q) 1 (43)

This contribution can be taken by calculating the following charge correlation:
1", 1) = ([pelq, 1) — Zapn(g, DI[ra(q,0) — Zapy(q,0)])  (44)
with
pn(g. 1) =) explig - Ry(1)].
Thus, we obtain the final ;xpression for deriving the photoabsorption cross section:
1%, @)/N = 1£i(@) + p(@) = Zal*Si (g, @) + ZSe(q, @)
+Za [ g0 - &S, of) dof (45)
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which with the aid of (16) leads finally to the expression for the absorption cross section:
K@) = 1i0) + p(@) ~ Za P ) + Zif (@) + Ze [ S0 — o) S, of) b (46)

The absorption cross sectiQuf®(w) owing to the core electrons involved in the third
term in (46) provides the standard expression for the photoabsorption cross section in terms of
the dipole—dipole correlation, the atomic polarizabilitgw) or the longitudinal conductivity
6% (w):

ZoeuSEo) = I [ (edi™ Oeign)e ™ d (47)
w2 oooo .

= ?/ (d(0) - d(t))e™"" dt (48)
2ho? ~ce

= —1 ~exp(—fha) Ja(w) (49)
2hw nce

= 1= exp(—fho) No(w) (50)

with the definition of the atomic polarizability in terms of the density—density response function
of the core electrons in the ion:

a%(w) = —ezf / 2x%(r, r'; w)z' dr dr'. (51)

These expressions can be obtained from (16) and the general relation [8] among the DSF
Sea(q, @), the density—density response functigl'[«] and the longitudinal conductivity
0°"[q, »] as follows (see appendix A):

1 o )
S g, w) = 5 | (el Dpe(a, 0))e“" dr (52)
— E l(\ tot
= T I exp ) x ] (3)
T 2
= P g R 0%q, w]. (54)

1 — exp(—Bhw) Tw
In this way, the absorption cross section (4) owing to the core electrons contained in each ion
in a plasma can be written in the dipole approximation in several forms:
At w 1
1 — exp(—Bhw)
B 4 1
T ¢ 1—exp(—phw)
2 1 / (d(0) - d(1))

080, w) = I a%(w) (55a)

R 6°%(w) (550)

— 4n25 ) e (55¢)

he 2w

2
_4.2¢ cer 25 [ Eb— Ea _
=47 Ecw agb pal(blz*%|a)| 8( = w) (55d)

with
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for incident photons polarized in thedirection. In the works [2—4] treating high-temperature
plasmas, the factor [2 exp(—Bhw)] 1 in (55a) is omitted; this omission leads to the definition
of thenet absorptiorcross section [2].

In the third term, the self-part of the ionic DSF for the high-frequency region [9]

1 1 1 2
Ss(q, w) = ———exp| —= 2 (56)
21 vrq 2\ v1gq

gives rise to the Doppler correction to the atomic photoabsorption; when a photon with a
momentunkqgo = h|wy — w1|/c is absorbed, associated with the transition between two bound
levels with a frequency differendeg — wy|, the third term becomes

’ 2
f Moo (@ — @) Ss(qo, ') do' ~ / Heo(@ — ) L exp[—<i) } do’ (57)

T wp wp

where the Doppler widthvp is given bywp = |wg — w1|+/2vr/c with v; =kT/m.

Since the absorption cross sectioff ,(w) is derived for the nucleus—electron mixture,
this can be written in the form for treating the Stark effect [11]:

2 0 2

Zge®uls, = % f (d(0) - d(1))e ' dr = % / e dt / de g(€)(d(0) - d(t)).  (58)
using the microfield distribution(e) = (5 (e — E;)). This expression (58) gives a formula for
treating the Stark broadening in a plasma [12].

The second term of (46) represents the absorption owning to the free electrons:

2hwZ;
1 — exp(—Bhw)
which can be approximated by the Drude model using the frequency-dependent collision
frequencyv(w):

4rro(®(w) = 4 Zin 6% (w) =~ wh/[v(w) — iw]. (60)

Thus, the absorption coefficiertw) = 47 RN o (w)/[n(w)c] owing to the free electrons is
written as

ZiP i (o) = N6 (w) (59)

(o]
R f <
[/v@P+1 e
47 R o*(w) = o2 (61)
<—p> v(w) for w > wp
w

with o9 = a)g/[4nv(0)] denoting the dc conductivity ang, denoting the plasma frequency.
The upper alternative of (61) provides the optical conductivity as was observed in the case of
liquid Na [13], and the lower one yields the inverse Bremsstrahlung [14]:

. <ﬂ>z V@) _ a)gv(w) 62)

w ) n(w)ec ca)\/ra)g

with the refractive index () (see appendix A).

The first term of the absorption cross section (46) represents the absorption owing to the
nuclear motion, which becomes zero in this approximation, sfi@ = Zg andp(0) = Z;
the nucleus with the chargh, is perfectly neutralized by the bound electrgn®) and the free-
electron cloudp (r). It should be noticed that some paity) of the free-electron contribution
to the absorption is involved in the nuclear motion due to the relation (38), which means that
the electron cloug () is attached to each nucleus together with the bound elecifions
and the other part contributes to the free-electron absorption as given by (59).
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3. Photon scattering

As we have proven in the previous section, the photon scattering can be described by the DSF
S%(¢, w) of all electrons in the system:

1(q.w)/N = Sg(q, ®)
= 1£i(@) + p(@)1Si(q, w) + Zt S%(q, ®) + Zg f 5°g, ® — @) Ss(q, @) do'.
(63)

This expression contains three dynamic structure factors: the ion—iorsPGFw), which is
observed usually in thermal neutron scattering experiments, the core-electrasffigky)
defined by (36) and the ‘free’-electron DSE (¢, ) defined by (42).

For the purpose of presenting the inelastic x-ray scattering for an incident photon with
energyhwo > I (the ionization energy), equation (63) is rewritten in a form that focuses on
Si(g, w):

1(g, ®)/N = 1fi(@) + p(@)?Si(q, w) + Zt S%(q, ®) + ZgSic(q, ®) (64)
with

ZgSinc(q. w) = Zg / S(g, » — @) Ss(q, ') do’ ~ ZgS§°(q, 0). (65)

On the basis of this equation, the dynamic structure facip(g, ) for liquid metals were
observed by Sinet al [15] by means of inelastic x-ray scattering. In this experiment, the
second and third terms are regarded as yielding the incoherent scattering from the free and
bound electrons.

The x-ray diffraction from a liquid metal or a plasma is described by the static structure
factor S2'(¢):

S9%q) = / 5%, @) dw = | fi(g) + p(@)I*Su (@) + ZtSee(q) + ZBShe(q) (66)

which is an extension of the usual formula for x-ray diffraction [16] to the case of the metallic
system [10]. HereZgS! .(¢) denotes the incoherent Compton scattering produced by the
bound electrons in each ion:

Z8Sic(q) = Zs5%(q) = (8ps(q) 8p3(@)) = ZsS°(q) — | fi(@)I? (67)
~Zs— Y | fiu(@)? (68)
Jjk

which can be evaluated approximately using the formula given by James [16] in terms of
fim(q) = (I] expliq - 7]|m), andS(q) is the ‘free’-electron structure factor. Here, it should

be noticed that equation (67) provides a formula for evaluating a more accurate incoherent
scattering (even for a plasma), compared to James'’s expression (68), and can be used for the
analysis of the x-ray diffraction to obtain a more exact result. For a liquid metal or a plasma, the
incoherent Compton scatteritiy Si.(¢) in the system consisting of neutral atoms is replaced

by

ZaShe@) ~ Za =Y | fi@))? (69)
Jjk
= Z8Sihe(@) + Z1S%(q) (70)

in conjunction with the replacement of the atomic form factf(¢) = fi(q) + p(g). Since
falq) ~ fi(g) + p(q) [17,18], the x-ray diffraction experiment on a liquid metal can be
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analysed by using the atomic form factfi(¢) as if the liquid metal is a non-metallic system.
Moreover, on the basis of (66), Nardt al [19] have proposed using x-ray scattering as a
diagnostic for dense strongly coupled plasmas; the possibility of obtaining information on the
electron—ion temperature relaxation time as well as a temperature diagnostic is indicated in
addition to an equation-of-states diagnostic. _

The ‘free’-electron DSFSZ(q, w) in (63) becomes the electron DS@' (g, w) in the
jellium model if the dynamical LFQ (¢, w) in (42) is approximated by the dynamical LFC
G (g, w) ofthe jellium model. Inthis sense, the inelastic x-ray scattering experiments [20-22]
for w ~ wp provide the DSF of the electron gas in a metal. However, it should be remembered
that S2(q, w) is only a part of the electron DSF given by (38). For large energy transfer
w >> wp, this term produces Compton scattering due to the free electrons [23].

Inelastic x-ray scattering by the core electrons in the ion [24—-26] is described by the
core-electron DSE®(q, ) involved in (63). This inelastic x-ray scattering discriminates
between Raman and Compton scattering according to the incoming photon energy compared
with the ionization energy. It should be noticed that the Raman scattering cross section is
closely related to the photoabsorption cross section, since theSS&F, w) has a relation
to the longitudinal current—current correlatioff®(), giving the absorption cross section as
(16) shows. In the inelastic x-ray experiments, where the transfer eaeigychosen as
suitable for the determination 6F%(q, w) or S%4(q, w) in (63), the first term of (63) provides
elastic scattering called Rayleigh scattering [27], since the ion—-ion DSF can be treated as
Si (g, w) ~ S (g)é(w) for this w-range.

Note that the inelastic scattering formula (63) for x-rays is only applicable to the non-
resonant casexp > I) where the incident x-ray energy is far from the ionization energy
I. When we treat anomalous x-ray scattering £ I) or light (and electromagnetic wave)
scattering to observe the ion—ion DS[(gq, w), we must take into account the second-order
contribution of thep - A term to scattering in addition to th&? term, which alters the first
term in (63) representing the scattering from the nuclear motion as follows:

2
m 5.
1™q, w)/N = ‘fI(CI) +tplg) — e—zwgace(wo) — Zg| Su(q, w). (71)
Here,a®(wp) denotes the atomic polarizability defined by (51) (see appendix B). Thus, anom-
alous x-ray diffraction from the metallic system is described by the formula
2

1(@)/N = |fi(@) + p(g) — gwé&w(wo) — Zg| Su(q) + Z:5°(q) + ZeSie(q) (72)

which reduces to the well known formula used to describe anomalous x-ray scattering [16] for
non-metallic systems whepdgg) = 0 andZ; = 0. Itis important to remember that the atomic
polarizability @°¢(wp) in (72) should be determined for an ion in the presence of surrounding
ions and electrons, instead of for an isolated ion as in the analysis of the anomalous x-ray
diffraction experiment, and that we must take account of the presence of the Fermi surface of
free electrons in the edge calculation, since an electron excited by a photon can be moved only
to above the Fermi surface at zero temperature.

On the other hand, in the case of light (electromagnetic wave) scattering, equation (72)
can be written as

2
m N
1"(q, w)/N = |Z; — ;wéaw(m Si(g. w) (73)

since in this case we can make the approximatiég) + o (¢) — Zg ~ Z;, because of the wave-
vector being nearly zerg(~ 0). This expression reduces to the usual formula [28] for optical



Interaction of photons with plasmas and liquid metals 241

Raman (inelastic Rayleigh) scattering for non-metallic fluids € 0), which represents the
Rayleigh line and the Brillouin lines as elastic and inelastic scattering, respectively [9].

In plasma physics, it is customary to call scattering from the free electrons Thomson
scattering [29—34], which is described by the free-electron DSF:

1 00 |
2nZiN /_oo<pf (¢, pf (g, 0)) expliowr) dr. (74)

In plasma diagnostics by means of light scattering, Thomson scattering is considered to give the
ion feature in addition to the electron feature, since the bunches of electrons which are a shield
on each ion reflect the ion motion, and the free-electron DSF is divided into electron-feature
and ion-feature partsSee(q, @) = SS(q. ) + Ste(q, ).

The free-electron DSF is determined from the fluctuation-dissipation theory as

— = E’B l ~ . fe
Seelq, ) = /700 1= exp—pho) 7 S Xq [@] dw (75)

with the use of the free-electron density response function

Seelq, ®) =

1310] | p(q. @)?

Xy lo] = .o Z X [o]. (76)
Here,

€e(q, w) = 1 +n§Bvee(q)[1 — G(g. )] xXw] (77)

p(q, ®) = n§Ce(q, ) x @] /ée(q, @). (78)

In the above expressions, the free-electron density response function is exactly (but formally)
represented using the dynamical electron—ion direct correlation function, o), andxz'l' [w]

is the ion—ion density response function [10]. Also, the electron cloyd ») surrounding

each ion is approximated by a static ong) = p(g, 0) in the expression (76), since the
electron motion is very rapid compared to the ion motion owing to the large mass difference
between them. Then, there results from (75)

_lp@P?
- Z

See(q, ) Si(q, ®) + S%(q, ®) (79)

which provides the ion feature as the first term involving the ion—ion Bk, w) and the
electron feature as the second term representing the ‘free’-electrofQ§Fw) in (79), which

was already shown as (38), to derive the absorption cross section in the previous section. It
should be noted that this division of the free-electron density response function into ion and
electron featuresin (76) is different from the usual division [29—31] used for Thomson scattering
in plasma physics, and is more natural than that.

From a fundamental point of view, it is not correct to treat light scattering by plasmas only
using the free-electron DSfe(q, @), Since photons are scattered also by the core electrons
coupled with the nuclear motion in a partially ionized plasma. By taking account of the
core-electron contribution to light scattering, ‘Thomson’ scattering is described by

2
1M™Ng, w)/N = | fi(q) + pg) — %wé&"e(m — Zg| Su(g, ®) *+ Z Sedlq, @) (80)

and the third termS®(g, w) ~ S$°(g, 0) of (63) yields the background scattering for this
experiment. When the wavevectpiis small and the atomic polarizability is negligible com-
pared withZ;, this expression reduces to

IThomsortq’ w)/N ~ ZfZS“ (g, w) + Z; Sge(q, w) (81)
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which becomes identical with (79) due 0) = Z;, and provides confirmation of the
conventional experimental analysis for the smgatkegion. In this formula, the total scattering
cross section is determined by

IThOmSOl’tq)/N — |f‘|(q) + p(q) _ :1_2(1)%&09(0) _ ZB|2S|| (q) + Znge(q) (82)

>~ Z2Si(q) + Z1So%(q) (83)

from which the ion-feature and electron-feature parts at zero wavevector are provided in the
forms
2

I.Thomsorto)/N — ”I()KT/,B

m
2~ce
ion Zi — ;woa (0)

(k7 is the isothermal compressibility) and
IThomsortO)/N =0

ele

respectively, while the largg-behaviours go like
2

. m N
Jim, Ihomsen gy /N = ‘ZB + ;wgam(m

and
lim 1JhomseNgy /N = 7;.
q—)DO

These results show different behaviours from the ion and electron features of the usual
definition, even in the weakly coupled classical-gas I'vméi&r/ﬂ =1/(Z; +1).

In addition to light scattering, it should be mentioned that inelastic x-ray scattering may
be used for plasma diagnostics on the basis of (63); the electron fesftgew) may be
easily observed. On the other hand, it will be difficult to measure the ion feSjute w),
observation of which requires a high-resolution experimeab (~ 10 meV), although the
ion—ion DSFs of liquid metals have been observed by ®inal [15] using inelastic x-ray
scattering.

4. Conclusions

On the basis of the dipole approximation, we have derived the photoabsorption cross section
(46) for a plasma or a liquid metal, which represents photoabsorption caused by the nuclear
motion, the free-electron motion and the core-electron behaviour in the ion. Also, each
term of (46) can be described, if necessary, in any form of the dipole—dipole correlation,
the polarizability, the conductivity or oscillator strengths, as is given for the case of the core-
electron photoabsorption in (85-(55d). It should be noticed that some pafig) of the free
electrons contributes to the photoabsorption due to the nuclear motion as the screening charge,
while the other part constitutes the so-called free—free absorption; this absorption does not
come from the atomic polarizatiaif®(w) of (55a) as was frequently recognized in the form
ast(w).

! On the other hand, the standard method of calculating the electron Bremsstrahlung in a
plasma is based on a model where a photon is radiated or absorbed in the scattering of an
electron by ansolatedatom or ion [35]: this model may be described by (2). However, as the
density of a plasma is increased and the coupling of particles in a plasma becomes strong, the
isolated-atom model and the tem{f(w) in (46) will be shown to give different results from
each other to a large extent. In contrast to the case of the free—free absorption, the bound—
bound and bound—free absorptions can be obtained by treaginglaion in a plasma, as the
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third term of (46) indicates. The absorption cross sedciifitiw) due to the core electron in a
plasma can be determined from the density—density response function for a single ion by (51),
which can be evaluated by the Zangwill method [36] with its extension to take account of the
surrounding ions and electrons in the presence of the Fermi surface. This approach based on
(46) will produce a significantly different result from that for an isolated atom as usually used
for the plasma spectroscopy. This programme is now in progress.

The absorption cross section in the dipole approximation is related to the photon scattering
cross section as the relation (16) indicates. In the derivation of the absorption cross section,
the form factor approximation (23) plays an important role for deriving the expression for the
total DSF. It is important to remember that this approximation is well established for x-ray
diffraction experiments. Also, the ‘metallic’ form factgi(q) + o (¢) should be thought of as
an established approximation, since the x-ray diffraction of all liquid metals is analysed with
the use of the atomic form factgh (¢), which is almost identical to the metallic form factor
filg) + p(q). This experimental fact lends support to the photoabsorption expression (46)
through the relation (16).

On the other hand, the photon scattering formulae, (63) and (71), provide a wide view
of photon scattering experiments; we can see the whole mechanism of photon scattering in a
single formula, which can be used to observe any motion in the system containing the nuclear
motion the free-electron motion or the core-electron behaviour of the ion. Since the structure
of the background scattering for each experiment is clearly defined, a combination of several
kinds of experiment provides reliable data.

In usual analysis of the anomalous x-ray scattering experiment, the anomalous scattering
factor (m /e2)w§&°e(wo) + Zg is taken from the result calculated for a neutral atom, even in a
metal. It should be noted that the anomalous form factor for the metallic system is different
from that for the non-metallic systenya(q) is replaced byf(¢) + p(¢) and the atomic
polarizability&“®(wg) should be calculated for a metallic state taking account of the effects of
the surrounding ions and electrons in addition to the presence of the Fermi surface.

The so-called Thomson scattering in plasma physics is nothing but ‘light’ scattering from
a plasma,; a light scattering formula (71) for a plasma derived in the present work has proved
that ‘Thomson’ scattering is described only by the free-electron DSF for the gnmedjion.

Also, we proposed a more natural division of Thomson scattering into the ion feature and the
electron feature, as given by (79).

The most fundamental assumption made in deriving the photoabsorption and scattering
formulae is that a liquid metal or a plasma can be considered as an electron—ion mixture. For
a liquid metal, there is no problem in using this model, especially for a simple metal. On
the other hand, for a plasma, the ion in this theory is only the average ion; there are many
kinds of charge state in general. Therefore, in order to compare the result of this model with
experiments, we need further refinement, such as a combined use of the Saha equation to
determine the charge population [37]: this problem remains for future work.

Appendix A

The photoabsorption cross section owing to the core electrons in the ion can be represented by
the core-electron DSF as

1 [ :
HE@) = - f (3 (0) - jS())Le ™ dr (A1)

wz ce a)z qgce
= ZnFSee(q, w) = Zn?See(q, ) (A.2)
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where equation (A.2) results from the fact t#£(¢, ») differs from Sgg(q, ) only by the
term §(w), as defined in (35). Therefore, the zerdimit of the core-electron DSF divided

by ¢

Svce(q,w) _ 1 00 ice(q,l) o
pE; = 5770 [m p e ' dt (A.3)
can be calculated by taking this limit:
jce . -
jim L0 iy L / f dr dr'e 197 (3pa(r, 0) Spa(r, )69 (A4)
q—0 q q—0¢q
= / / dr dr'z (8ps(r, 0) 8ps(r', 1))z’ (A.5)
1
= (z(0)z (1)) = §<7'(0) -7 (1)) (A.6)
which gives rise to the dipole—dipole correlation
. e25%%q, w) 1 «1 o
[I1|E10 7 = 977 [wé(d(O)-d(t)>e dr (A.7)
with
dit)y=er(ty=er Y  8(r—mri1). (A.8)
iebound

In a similar way, we can obtain the atomic polarizability by taking this limit:

2., ce 2
lim ¢ qu[w] = lim e—szdr dr’ €797y C(p, r'; w)e " (A.9)
q—0 q q—0¢q
2
= % / / dr dr’ (r - ) x(r, r'; @) (A.10)
= — 4%w). (A.11)
Here, the density—density response funcigf{«] is defined explicitly by
1 [~ . [1
ce) - = ot — *
Xq o] = 7 /0 e <m[pa(q, 1), pg(q, 0)]> dr (A.12)
1 ) 1 1
= — s - Al
7 2 PalDlr @12 {w_wbaﬂn wmbam} (A13)

with hwps = Ep — Ea.
On the other hand, equation (54) results from the relation between the conductivity and
the polarizability:
oL (w) = —iwa(w) (A.14)
which is the zeray limit of the general relation between the longitudinal conductivity and the
density response function [8]:

. e (> . i e’y
oLlg, 0] = N/ B(3;(0); Gg (1)L € dt =iw );”’2[ ] (A.15)
0
The absorption coefficiertt(w) [38] is defined in the form
XN ~x 21/2
k(o) = 2037 _ 203 € (A16)

c
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by using the complex refractive indéxwhich is given by the dielectric constadit

4
Ew)y=1+ oL

i =1+4rna(w). (A.17)

This definition ofk(w) provides an approximate expression for the case wiere €’

we"(w) ArNRo (w) dron Sa(w)
k(w) ~ = =

_ (A.18)
n(w)c n(w)c n(w)c

with the refractive index (w) ~ /R €(w).

Appendix B

Interaction of electrons with the radiation fielflr) is described by the Hamiltonian

H =H+H (Bl)
consisting of two terms: thg - A term,
&2 e 27 Tic?\ V2
Hy=— i - A(r; e P +pT T B.2
=5 IZp (r) = —— ;( Vo ) {P(9)aq + PT(q)a]} (B.2)

which is in the second-quantized representation used to describe the photon absorption, and
the A2 term,
2

_ ¢ 2
Hy= o Z:Ai (B.3)

e? 2hc? i (k—K)r; to, 1
:>2mc22 VW (ex - er) Ze‘ J [akak, +ak,ak] (84)

kK

J
which generates the photon scattering, with

P(k) = (ex - p;)explik - r;]. (B.5)
J

Since any bound electrof can be thought to belong to some iann the system, we can
represent its coordinate ag = R, +7,; therefore, we can obtain an approximate expression
for (B.5) in the form

P(k) ~ Y " explik - Ry]P* (k) (B.6)

with
P(k) =) (ex - Pja) €Xplik - 7o) = PO(K). (B.7)
J

As a result of (B.6), we can define the transition matrix of eachadaoing from an initial
statel = wo, ko, eo to a final statel" = w;, k1, e; by
Fe|HT' |N)(N|H{ |1e)

E; — Ey

“ <
Ffy(wo, w1) = (Fel Hy |Ie) + )
N

= gl kR { (Fel ) explitko — k1) - mio]l e} (eo - €1)

Py (Fel H{°|N) (N |H{°|le) } (B.8)

~ E;— Ey
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Therefore, the transition matrix for all ions in the system is written as

Fri(wo, w13 {Re}) = Y Ff (w0, 01)

= [Z é“%"“ﬂ’Rﬂ] { (Fel > explitko — k1) - rio] | le) (eq - €1)

o

1 Z[ (Fel PO(ko) IN) (N P®" (k)| Ie)
m

— e +h
N EN €7 ha)l

. <Fe|POT(k1)|N><N|Po(k0)|1e>:|}
eN—in—GI—ﬁwo ’

(B.9)

Now, the second term in the large bracket can be written in the elastic approximation [39] in
the form

1 (Ie] POT(ko) IN)(N|PO(ko)|Ie)  (Ie| PO(Ko)|N)(N|P T (ko)|Ie)
D -

= hawo — hoyo +in hiwg + hwng
= ey - mx 5 (—ko, wo) - €o (B.10)
= ey - mxjy(ko, wo) - €o (B.11)

in terms of the current—current correlation functigfy (ko, wo) [40] for the core electrons in
each ion kwyo = €y — €;). Because of the relation [40]
2
H ce _ H w cej _ m 5. ce
II{ILTIOmX“(k, w) = [L@Omﬁxk [w] — ZB] 1= [—Za) a““(w) — ZB] 1 (B.12)

which shows that the current—current correlation in the zero-wavevector limit can be rep-
resented by the atomic polarizability, the transition matrix (B.9) in the dipole approximation
(B.12) can be written finally in the form

F(w0; {Ra)) = [ fi(@) — mw§a®(wo)/e® — Zg] [Z eiq'm} (€0 - e1) (B.13)

= Fion(q, wo)pi(q, 1)(eq - e1) (B.14)

with ¢ = ko — k1. This indicates that, for the resonant case, the approximation t) =
fi@pi(q,t) of (23) should be replaced y(q, 1) = Fion(gq, wo)pi1(q, t), which leads to the
expression for anomalous scattering (71).

References

[1] Sobel'man |1 1972Introduction to the Theory of Atomic Specffaxford: Pergamon)
Stienlo A G 1967Electromagnetic Fluctuations in Plasniilew York: Academic)
[2] Grimaldi F, Grimaldi-Lecourt A and Dharma-wardaivi W C 1985Phys. RevA 321063
[3] Blenski T and Cichocki B 1994. Quantum Spectrosc. Radiat. Transdr49
Blenski T and Ishikawa K 199Bhys. Re\vE 51 1602
[4] Csanak G and KilcreasD P 1997J. Quantum Spectrosc. Radiat. Transs&537
[5] Sjolander A 1964”honons and Phonon Interactioed T A Bak (New York: Benjamin) p 76
[6] Van Hove L 1954Phys. Rew95 249
[7] Platzman P M and Wolff P A 1973Naves and Interactions in Solid State Plasr{idsw York: Academic)
Eisenberger P and Platzm® M 1970Phys. RevA 2 415
[8] Kubo R 1966Rep. Prog. Phy29 265
[9] Hansen J-P and McDorl R 1986Theory of Simple Liquiddondon: Academic)
[10] Chihara J 1983. Phys. F: Met. Physl7 295
[11] Dufty J W 1986Strongly Coupled Plasma Physied F J Rogers ahH E Dewitt (New York: Plenum) p 493
[12] Griem H R 1974Spectral Line Broadening by Plasm@déew York: Academic)



[13]
(14]
[15]

[16]
(17]
(18]
(19]

(20]

(21]

(22]
(23]
(24]

(25]
[26]
(27]
(28]
[29]
(30]
(31]
(32]

(33]

(34]
(35]

(36]

(37]
(38]
(39]
[40]

Interaction of photons with plasmas and liquid metals 247

Inagaki T, Arakawa E T, BirkhéfR D and Williams M W 1976Phys. RevB 135610

Cauble R and Rozmus W 1985ys. Fluids28 3387

Sinn H, Sette F, Bergmann U, Halcoussis Ch, Krisch M, Verbeni R and Burkel ERI9¢Y. Rev. Let#81715

Sinn H and Burkel E 19986. Phys.: Condens. Matté&9369

Jame R W 1962The Optical Principles of the Diffraction of X-raysondon: Bell)

Kambayashi S and Chihara J 19@Bys. Re\E 536253

Anta J A, JessoB J and Madde P A 1998Phys. Re\B 586124

Nardi E, Zinamom Z, Riley D and WoolgéN C 1998Phys. Re\E 57 4693

Woolsey N C, Riley D and Nardi E 199ev. Sci. Instrun69418

Eisenberger P, Platzm@ M and Pandy K C 197Bhys. Rev. Let81311

Eisenberger P and Platzm® M 1976Phys. RevB 13934

Eisenberger P, MaarW C and Brown G S 198Bhys. Rev. Letd51439

Shillke W, Nagasawa H and Mourikis S 19B#iys. Rev. Letb62 2065

Shillke W, Nagasawa H, Mourikis S and Lanski P 1988/s. Re\B 336744

Vradis A and Prifts G D 1985Phys. RevB 323556

Eisenberger P and Platzm® M 1976Phys. RevA 2 415

Suzuki T 1967J. Phys. Soc. Japa22 1139

Suzuki T, Kishimoto T, Kaji T and Suzuki T 197D Phys. Soc. Japa20 730

Mizuno Y and Ohmura Y 1963. Phys. Soc. Japa2R 445

Bushue V A and Kuz'min R N 1977Sov. Phys.—Us[20 406

Kissel L and PratR H 1985Atomic Inner-Shell Physiasd B Crasenmann (New York: Plenum) p 456

Gelbat W M 1972 Advances in Chemical Physied | Prigogine ad S A Rice (New York: Wiley) p 1

Kunze H J 1968Plasma Diagnosticed W Lochte-Holtgreven (Amsterdam: North-Holland) p 550

Evars D E and Katzenstein J 1968p. Prog. Phys32 207

Sheffield J 197%lasma Scattering of Electromagnetic Radiat{dlew York: Academic)

La Fontaine B, Dunn J, Baldis H A, Enright G D, Villeneuve D M, Kieffer J C, Nantel M and Pepin H 1993
Phys. Re\E 47583

La Fontaine B, Baldis H A, Villeneuve D M, Dunn J, Enright G D, Kieffer J C, Pepin H, Rosen M D, Matthews
D L and Maxon S 1994hys. Plasmas 2329

Glenzer G H, Rozmus W, MacGowan B J, Estabrook K G, De Groot J D, Zimmerman G B, Baldis H A, Harte
J A, Lee R W, Willians E A and Wilsm B G 1999Phys. Rev. LetB297

Myatt J F, Rozmus W, Bychenkov V Yu and Tikhonéhv T 1998Phys. Re\E 57 3383

Prat R H and Feng | J 198Btomic Inner-Shell Physiasd B Crasenmann (New York: Plenum) p 533

Salzmann D 199&tomic Physics in Hot Plasmg®xford: Oxford University Press)

Zangwill A and Soven P 198Bhys. RevA 211561

Zangwill A and Liberma D A 1984Comput. Phys. Commu82 63

Chihara J, Ueshima Y and Kiyokawa S 19PBys. Re\E 60 3262

Born M and Wolf E 196%rinciples of Optic{Oxford: Pergamon) p 613

Crome D T and Liberman D 197@hys. Rev631891

Pines D and Nozres P 196@heory of Quantum LiquiddNew York: Benjamin)



